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Internal symmetry in the multifractal spectrum of fully developed turbulence
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In the context of multifractal theory and She-Le´vêque’s model describing the statistics of intermittency in
fully developed turbulence, we show that the multifractal dimensions can be simply writtenF(a)511a*
2a* ln(a* /2) with a* 5(2b212a)/ lnb52bp, wherep is the order associated to the moment^« r

p& ~with p
>0) based on the rate of energy dissipation« r andb5@(113/A8)1/31(123/A8)1/3#3'0.68. Introducing the
fractal dimensionsDp5F(a)1a* ln(a* /2), this leads to the recursive relationb5(Dp112D`)/(Dp2D`)
with D`51. This suggests the existence of an internal symmetry in the multifractal spectrum of fully devel-
oped turbulence, which reduces considerably the number of parameters necessary to characterize intermittency
statistics.
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The attempts to understand fully developed turbule
and, more particularly, the phenomenon of intermitten
contain an implicit geometrical assumption for the fie
where energy dissipation occurs: The Kolmogorov appro
~which does not take into account intermittency! assumes an
homogeneous~space-filling! repartition of energy dissipation
@1,2#, theb-model@3# makes the hypothesis that this supp
is fractal@4# and, finally, the multifractal theory introduces
set of fractal structures of dimensionF(a) which are as-
sumed to be intimately interwined leading to the multifrac
spectrum@5# with some developments brought by the idea
universal multifractals@6#. A few years ago, the She
Lévêque’s model@7# ~hereafter SL! has shown a great ability
to describe experimental and numerical results concern
intermittency. Moreover, some theoretical works evidenc
that SL model corresponds to a log-Poisson statistics for
ergy dissipation fluctuations@8#. The aim of our Rapid Com-
munication is to show that if we apply the multifract
framework using the She-Le´vêque’s description, then it lead
to the existence of an internal symmetry in the multifrac
spectrum linking all the dimensionsF(a) to each other.

Fully developed turbulent flows are usually studied by
structure functionŝdVr

p& or ^« r
p&, wheredVr is the veloc-

ity difference across a distancer and « r the rate of energy
dissipation per unit mass averaged over a ball of sizer. Kol-
mogorov @1# postulates the existence of universal scal
laws when the scaler belongs to the inertial range:^dVr

p&
;r zp,^« r

p&;r tp ~with zp5tp/31p/3 given by the refined
similarity hypothesis@9#!. She-Lévêque’s model@7# leads to
the following scaling exponents:zp5@(2b21)/3#p12(1
2bp/3) andtp52(b21)p12(12bp) with b52/3.

We focus here on the scaling exponenttp characterizing
the energy dissipation statistics. Let us assume the validit
the multifractal framework and the She-Le´vêque’s laws. We
can calculate the multifractal spectrum associated to the
pressiontp52(b21)p12(12bp). In multifractal theory,
the local scaling exponentsa characterizing singularities in
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the energy dissipation field (« r;r a21,r→0) and the dimen-
sionsF(a) are linked to each other by Legendre transfor
with F(a)5minp(p(a21)1d2tp) whered is the embedding
dimension (d53 for a three-dimensional turbulence!. The
resulting condition on the derivative is](p(a21)1d
2tp)/]p50, which leads top5 ln((2b212a)/2 lnb)/lnb.
Let us introduce the quantitya* 5(2b212a)/ lnb52b p;
then it can be easily written

F~a!511a* 2a* ln~a* /2!. ~1!

We thus obtain a remarkably simple expression forF(a).
Let us analyze some properties of the quantityD(a)
5F(a)1a* ln(a* /2). Introducingl5(2b211 lnb)/lnb, it
is easily shown thatD(a)5l2a/ lnb. This linear form
means that, for every couple (a1 ,a2), we have

D~a1!2l

D~a2!2l
5

a1

a2
. ~2!

This relation implies that if, one measurement given b
couple @am ,D(am)# is known, then using Eq.~2! all the
spectrum ofD~a! dimensions can be deduced and, con
quently, the multifractal spectrum given byF(a) dimen-
sions. So, due to this internal symmetry, the number of m
surements necessary to characterize a multifractal structu
considerably reduced.

Let us propose now an interpretation of this symmetry.
fact, the local exponenta is directly associated with the or
der p throughp5 ln((2b212a)/2 lnb)/lnb; let the exponent
a8 be associated with the orderp11. It is easily shown that
@D(a8)21#/@D(a)21#5b. If amin is the minimum value
of a ~corresponding top→`!, we haveF(amin)5D(amin)
51. We thus can write@D(a8)2D(amin)#/@D(a)2D(amin)#
5b. Because there is a direct relation betweena andp, the
latter expression can be written

Dp112D`

Dp2D`
5b. ~3!

We then observe that, in the framework of She-Le´vêque’s
theory and multifractal approach, the calculation of the m
tifractal spectrum exhibits characteristic dimensionsDp ,
©2001 The American Physical Society01-1
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which are recursively linked to each other. A similar relati
is obtained for any arbitrary incrementdp to orderp. It is
shown that, in this case, (Dp1dp2D`)/(Dp2D`)5bdp. Let
us remark that Eq.~3! leads immediately to the following
expression:Dp5D`1(d2D`)bp. In Fig. 1, the functions
F(a), a* ln(a* /2) and their sumD~a! are represented, fora
values corresponding top>0, showing the linear behavio
of D~a!. Again, the interest of relation~3! through the intro-
duction of dimensionsDp lies in the fact that the knowledg
of one single dimensionDp @or equivalentlyF(a)# would be
enough to obtain all the other multifractal dimensions~but
here forp>0) having, of course, the value of the parame
b. This one will be determined in the paper, after the p
posal of a slight correction to the SL model which allows
determination. For this, we need to interpret physically
dimensionsDp .

In this interpretation of dimensionsDp , the casep50 is
immediate and givesD05d. When p→`, the quantityD`

characterizes the most intermittent events occurring on
ments having a dimensionD`51. These have been observe
experimentally@10# and numerically@11#. In order to pro-
ceed with the interpretation ofDp dimensions, we would firs
like to bring to She-Le´vêque’s model a slight correction
which will allow us to calculate the numberb instead of
simply assuming the value 2/3, as is made in the model@7#.
SL theory defines a set of moment ratios« r

(p)

5^« r
p11&/^« r

p& linked by a recursive relation« r
(p11)/« r

(`)

5Ap(« r
(p)/« r

(`))b, where 0,b,1 and Ap is a constant
which appears experimentally to be independent on the o
p: Ap5A @12#. « r

(`) is the moment ratio corresponding to th
filamentary fluid structures assumed to present the sca
behavior: « r

(`);r l`. To determine the parameterl` , the
authors assume the scaling« r

(`);dE`/t r , wheredE` is a
kinetic energy andt r a characteristic time based on the h
pothesis that the mixing due to these structures having
characteristic time are homogeneous. It means that the
mogorov description can be applied: It givest r;«21/3r 2/3

and thenl`522/3. A modification of the last calculation
will allow us to derive the numberb without this assump-
tion. We know that the timet r can be estimated by

FIG. 1. Calculated values of dimensionsF(a), a* ln(a* /2), and
D~a! represented as a function ofa ~corresponding top>0).
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r /^udVr u&, with ^udVr u&;r z1. The assumptiont r;«21/3r 2/3

means in fact thatz151/3. Instead of fixingz1, let us rather
keep the relation̂ udVr u&;r z1, which givesl`5z121. Of
course, forz151/3, we recoverl`522/3 given by SL ar-
gument. Writingz1 with the general expression ofzp and
using the relationsl`5z121 andl`5C0(b21) whereC0

is the codimension associated with the most intermitt
structures~the latter relation derives from the exact res
t150 @2#!, it is then possible to obtain an equation f
b, 3b1/312b2450, whose solution isb5@(113/A8)1/3

1(123/A8)1/3#3'0.68. Let us notice that in this previou
calculation, the choice of estimating the timet r by the quan-
tity r /^udVr u& instead of another~such asr /^udVr up&1/p with
p52, for example! is given by the implicit hypothesis to
take the moment̂udVr up&, which presents the smallest lev
of intermittency. Knowing that intermittency increases wi
p, the order one moment^udVr u& is the most appropriate to
catch a Kolmogorov’s mean behavior. The slight differen
of our b value compared to the SL value 2/3 is qualitative
important. Let us recall that Chavarriaet al. @12#, trying to
verify experimentally SL description, have foundb50.68
60.03 but, due to experimental uncertainties, it is difficult
discriminate between the two values. However, we see t
using relation~3! for p50, we can obtain (D12D`)/(d
2D`); this impliesD15112b'2.36 ~instead of 2.33 with
the SL parameter!. This value 2.36 is very close to the cla
sical fractal dimensionD f found in turbulence for a grea
number of interfaces~jets, mixing layers, and clouds!, sug-
gesting to some authors the existence of a universal beha
in turbulence@13#.

Let us recapitulate our interpretation ofDp dimensions
when p50, we haveD05d; this means that all the field is
contributing, if p51, only the active part of turbulence i
considered becauseD1 is equal to the classical fractal dimen
sionD f'2.36 ~as in theb model@3#! and, finally, ifp tends
to infinity, then it gives the dimensionD`51 of the most
intermittent structures which display filamentary forms.
suggests interpreting the orderp as a thresholding quantity
on the fluctuation of the rate of energy dissipation. In fact
is easily observed that whenp increases, the largest fluctua
tions of « r take on more importance in the final value of th
moment̂ « r

p&. We thus consider thatDp is the fractal dimen-
sion of the support contributing to the moment^« r

p&; in a
recent paper, these supports have been called thefractal
skinsof fully developed turbulence@14#.

The calculation of parameterb allows now a verification
of this internal symmetry in the multifractal spectrum an
more particularly, of relationsD(a)5l2a/ lnb, ~2! and~3!
~with the calculated value ofb ~'0.68!, we havel'0.065
and 21/lnb'2.59!. For this, we used the measurements
dimensionsF(a) characterizing energy dissipation field, o
tained by Arneodoet al. @15# through a turbulent velocity
signal obtained at Modane. From these values, we calcul
the D~a! dimensions~only for p>0). Both quantities are
represented in Fig. 2. We observe that the functionD~a! is
close from a linear variation@the linear interpolation gives
D~a!'0.0212.63a, in very good agreement with theoretic
1-2
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approach# which immediately implies relations~2! and ~3!.
One can observe that,l being relatively small, relation~2!
can be approximated byD(a1)/D(a2)5a1 /a2.

Let us come back to the interpretation ofDp dimensions.
So, if fully developed turbulence displays a set of frac
structuresVp of dimensionDp linked to each other by the
recursive relation (Dp112D`)/(Dp2D`)5b, it should be
possible to start from this point of view in order to determi
its scaling properties. Let us calculate the moments^« r

p&. For
this, we have to introduce some adequate quantities.
fractal structuresVp are characterized by space-filling pro
erties defined by the volume-fractionf p(r )5Vp(r )/VT .
Vp(r ) is the volume occupied byVp at the scaler and VT

5r 0
d is the total volume of the field, wherer 0 is the integral

scale. Since Vp is fractal, it can be writtenVp(r )
5(r 0 /r )Dpr d and thusf p(r )5(r /r 0)d2Dp. To be able to cal-
culate ^« r

p&, we need a quantity experimentally accessib
Let P be the rate of energy transferred which, in equilibriu
conditions of energy injection and energy dissipation, is
sumed to be constant:P'(rr 0

d)(v0
3)/r 0, where v0

5^dVr0
2 &1/2 is the typical velocity associated to the integr

scale andr the fluid density. The rate of energy dissipat
per unit mass noted«̄r is calculated through«̄r5P/m(r ),
wherem(r) is the mass of the fluid contained in the acti
part ~which is assumed to be fractal of dimensionD f) of the
field at the scaler. The quantitym(r) is expressed bym(r )
5rr 0

d(r /r 0)d2D f . Then, we obtain the scaling relation«̄r

;r D f2d. We insist on the fact that the quantity«̄r is really

FIG. 2. Measurements ofF(a) from Ref.@15# ~for p>0! and its
correspondingD~a! dimensions as a function ofa.
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different from ^« r&. The first one is an average only ove
active parts and the second one~which is classically used! is
an average over all the field integrating active and nonac
parts. In the calculation of̂« r

p&, there are two contributions
« r

p due to the active part and the intermittent factorf p(r )
quantifying the space filling properties of the active part.
gives ^« r

p&;«̄ r
pf p(r ). If we assume the existence of scalin

laws ^« r
p&;r tp, then it leads totp5(D f2d)p1d2Dp .

SinceD f2d5(d2D`)(b21) andDp5D`12bp, then we
obtain tp52(b21)p12(12bp) taking d53 andD`51.
We recover the She-Le´vêque expression. Nevertheless, o
derivation is different from the SL one because it is bas
only on geometrical arguments. Moreover, using the rela
moment « r

(p)5^« r
p11&/^« r

p&, it can be easily shown tha
« r

(p11)/ «̄r;(« r
(p)/ «̄ r)

b. So, we find a similar relation to the
SL fundamental hypothesis@7# where «̄ r should be associ-
ated with« r

(`) . However, the quantity«̄ r does not character
ize scaling properties of filaments but mean-field proper
of energy dissipation. For this reason, in our descripti
intermittency is not due to filaments but to this specific hi
archy, beginning withV1 ~associated with«̄ r! and linking all
the fractal skinsVp to each other.

As a conclusion, it has been shown that statistics of fu
developed turbulence reveals the existence of an inte
symmetry in its multifractal spectrum calculated assumin
log-Poisson distribution through She-Le´vêque’s model@7#.
The multifractal dimensionsF(a) can be simply written
under the form F(a)511a* 2a* ln(a* /2), with
a* 5(2b212a)/ lnb52b p where b5@(113/A8)1/31(1
23/A8)1/3#3'0.68. Introducing the dimensionsDp5F(a)
1a* ln(a* /2), this leads to the recursive relationb
5(Dp112D`)/(Dp2D`) with D`51. The dimensionDp is
interpreted as the spatial support of the main contribution
the moment̂ « r

p& based on energy dissipation. This hiera
chical structure of fractal skins between all the dimensio
Dp , directly linked to the multifractal spectrum, reduc
considerably the number of parameters needed to chara
ize the statistical geometry of intermittency. We think th
this result could be very useful to describe some other s
tems displaying multifractal or intermittency statistics su
as magneto-hydrodynamic turbulence@16# or diffusion-
limited aggregation@17,18#. Of course, this vision require
more developments, and we expect to publish our res
very soon.

The author expresses all his gratitude to the Professo
G. Rocha for her help and numerous suggestions and
Schmitt for very interesting discussions on this subject.
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