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Internal symmetry in the multifractal spectrum of fully developed turbulence
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In the context of multifractal theory and Shésegue’s model describing the statistics of intermittency in
fully developed turbulence, we show that the multifractal dimensions can be simply wFitey= 1+ o*
—a*In(a*/2) with a* =(28—1— @)/InB=24°, wherep is the order associated to the momésf) (with p
=0) based on the rate of energy dissipatiprand 8= (1+ 3/1/8)3+ (1— 3/,/8)3]3~0.68. Introducing the
fractal dimensions\,=F(a)+ a*In(a*/2), this leads to the recursive relatigh=(A,,1—A.)/(A,—A.)
with A_,=1. This suggests the existence of an internal symmetry in the multifractal spectrum of fully devel-
oped turbulence, which reduces considerably the number of parameters necessary to characterize intermittency
statistics.
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The attempts to understand fully developed turbulenceghe energy dissipation fields(~r*~1,r—0) and the dimen-
and, more particularly, the phenomenon of intermittencysionsF(«) are linked to each other by Legendre transforms
contain an implicit geometrical assumption for the field with F(a)=min,(p(a—1)+d—7,) whered is the embedding
where energy dissipation occurs: The Kolmogorov approacimension (=3 for a three-dimensional turbulencerhe
(which does not take into account intermittepegsumes an  "esulting condition on the derivative ig(p(a—1)+d
homogeneousspace-filling repartition of energy dissipation ~ 7p)/9P=0, which leads top=In((24—=1-a)/2 In,B)/In,%
[1,2], the B-model[3] makes the hypothesis that this support![‘het u_? mtrot():luce tf|1e qgt?ntltyz =(26-1-a)/Inp=25%
is fractal[4] and, finally, the multifractal theory introduces a en it can be eastly wrtten
set of fractal structures of dimensidf(«) which are as- F(a)=1+a* —a*In(a*/2). (1)
sumed to be intimately interwined leading to the multifractal
spectrunm 5] with some developments brought by the idea of
e el 0% e St “F(a)-a (a2, voducingh - (25~ L+ I, 1
to describe experimental and numerical results Concemin:?neansl %/hat f(\)l\: ever c(oau) _Ier( ::) @e halvel
intermittency. Moreover, some theoretical works evidence ' y pled, az),
that SL model corresponds to a log-Poisson statistics for en- Ala))—N oy
ergy dissipation fluctuatior8]. The aim of our Rapid Com- Aas)—N = ay 2
munication is to show that if we apply the multifractal
framework using the She-keéque’s description, then it leads ~ This relation implies that if, one measurement given by a
to the existence of an internal symmetry in the multifractalcouple [am,A(amy)] is known, then using Eq(2) all the
spectrum linking all the dimensiors(a) to each other. spectrum ofA(«) dimensions can be deduced and, conse-

Fully developed turbulent flows are usually studied by thequently, the multifractal spectrum given by(«) dimen-
structure functiong 8V, P) or (&,P), wheresV, is the veloc- ~ SIONS. So, due to this internal symmetry, the_ number of mea-
ity difference across a distanceand &, the rate of energy Surements necessary to characterize a multifractal structure is
dissipation per unit mass averaged over a ball of sizeol- ~ considerably reduced. , ,
mogorov [1] postulates the existence of universal scaling L€t US propose now an interpretation of this symmetry. In
laws when the scale belongs to the inertial rangésV,”) fact, the local exponent is directly associated with the or-
~ré,(e,P)~170 (with {o= 7o+ PI3 given by the refined de,rp throughp—ln((_Z,B—l—a)/Z InB)/In_ﬁ, Iet_the exponent
similarity hypothesig9]). She-Lereque’s mode[7] leads to aA be, assoclated with t_he or?pﬁ LIt 'f] easily shown tlhat
the following scaling exponents;,=[(28—1)/3]p+2(1 [f (a')~11/[A(a)—1]=B. If amy, IS the minimum vaiue
— g% and ro=2(8—1)p+2(1— B°) with B=2/3, (1 a (corresponding .tq)*)fx?, we haveF (amin)=A(amin)

We focus here on the scaling exponeptcharacterizing :1' \é\;i;[::: fha:ar]re\l\/igtg%grcéc)t_r (ﬁét‘i}‘gﬁ”)gg@égé;ﬁéamgl
the energy dissipation statistics. Let us assume the validity qT'B‘ . - P,
the multifractal framework and the Shéaague’s laws. We atter expression can be written
can calculate the multifractal spectrum associated to the ex- Api1—A.
pressionr,=2(8—1)p+2(1—AP). In multifractal theory, A A B ()]
the local scaling exponents characterizing singularities in P

We then observe that, in the framework of Shedaie’s
theory and multifractal approach, the calculation of the mul-
*Email address: queiros@cenerg.ensmp.fr tifractal spectrum exhibits characteristic dimensiohg,

We thus obtain a remarkably simple expressionFOu).
Let us analyze some properties of the quantlty«)
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35 r1{|8V,|), with (|6V,|)~r¢t. The assumption, ~ g~ Y323
34 = Flo) means in fact that,;=1/3. Instead of fixing/,, let us rather
s o*In(o*/2) keep the relatio| 8V, |)~r¢, which gives\.,=¢;—1. Of
2571 . A0) course, for{;=1/3, we recovei .= —2/3 given by SL ar-
2 1 gument. Writing¢, with the general expression ¢f, and
15 | using the relationa .= ¢;—1 and\,,=Cy(B—1) whereC,

is the codimension associated with the most intermittent

11 structures(the latter relation derives from the exact result

0.5 4 7,=0 [2]), it is then possible to obtain an equation for
ol . B, 3BY3*+2B—4=0, whose solution ig8=[(1+3/,/8)*3
+(1-3/\/8)*33~0.68. Let us notice that in this previous
-051 calculation, the choice of estimating the timedy the quan-
-1 : tity r/{|6V,|) instead of anothefsuch asr /(| 5V, |P)P with
0 0.5 1 o 15 p=2, for example is given by the implicit hypothesis to

_ _ o take the momeng| 8V, |P), which presents the smallest level
FIG. 1. Calculated values of dimensidfga), a*In(a*/2), and  of jntermittency. Knowing that intermittency increases with
A(a) represented as a function af(corresponding t@=0). p, the order one momemtﬁvrb is the most appropriate to

which are recursively linked to each other. A similar relationcatch a Kolmogorov's mean behavior. The S!'ght dlffer.ence
is obtained for any arbitrary incremedp to orderp. It is of our B value compared to the SL value 2/3 is qualitatively
shown that, in this caseA, gp— A)/(Ap— A )=B9P. Let important. Let us recall that Chavarré al. [12], trying to

us remark that Eq(3) leads immediately to the following Verify experimentally SL description, have fourf=0.68
expression:Ap=Am+(d—Am),Bp. In Fig. 1, the functions +0.03 but, due to experimental uncertainties, it is difficult to

F(@), e*In(a*/2) and their sumi(a) are represented, for ~ discriminate between the two values. However, we see that,

values corresponding tp=0, showing the linear behavior using relation(3) for p=0, we can obtain 4;—A..)/(d

of A(@). Again, the interest of relatiof8) through the intro- —A.); this impliesA;=1+2p~2.36(instead of 2.33 with
duction of dimensiond, lies in the fact that the knowledge the SL parameter This value 2.36 is very close to the clas-
of one single dimension , [or equivalentlyF(a)] would be  sical fractal dimensiorD; found in turbulence for a great
enough to obtain all the other multifractal dimensidhst  number of interfacegjets, mixing layers, and clougissug-
here forp=0) having, of course, the value of the parametergesting to some authors the existence of a universal behavior
B. This one will be determined in the paper, after the pro-in turbulence13].

posal of a slight correction to the SL model which allows its  Let us recapitulate our interpretation af, dimensions
determination. For this, we need to interpret physically thewhenp=0, we haveA,=d; this means that all the field is
dimensionsA,, . contributing, if p=1, only the active part of turbulence is
_In this interpretation of dimensions,, the cas@=0is  considered because, is equal to the classical fractal dimen-
|mmed|at§ and g|ve$0f d. When p—o, the quanﬁltonc _ sionD;~2.36(as in theB model[3]) and, finally, ifp tends
characterlges the_ most_lnterm|ttent events occurring on filag, infinity, then it gives the dimensioA,,=1 of the most
ments having a dimensiok,. = 1. These have been observed jyiemittent structures which display filamentary forms. It

experlmentally[lo] and _numencglly[ll]_. In order to pro- suggests interpreting the ordpras a thresholding quantity
ceed with the interpretation df, dimensions, we would firSt - 0 g ctyation of the rate of energy dissipation. In fact, it
“ke. to b_rmg to She-Leeque’s model a S“ght. correction ¢ easily observed that whemincreases, the largest fluctua-
\gmc? Vgglsjrlrl:xv fﬁet?,affécggtea;hé m;rggﬁ Itrr:Seten?gﬂ]Z]; tions of ¢, take on more importance in the final value of the
SL pgheor q gf_ t, ’ ¢ ratios(® moment(e}). We thus consider that, is the fractal dimen-

y (dciines a set ol moment raios, sion of the support contributing to the moment’); in a

= (ght1 Py i i o (PT1)7 (=)
(er (g)/(s(,x)) gnked by a recursive relat!om, ler recent paper, these supports have been calledfrtotal
=Ap(er/er )", where 0<B<1 and A, is a constant gyinsof fully developed turbulencgl4].

which appears experimentally to be independent on the order The calculation of parametgg allows now a verification

p: Ap=A[12]. £{) is the moment ratio corresponding to the of this internal symmetry in the multifractal spectrum and,
filamentary fluid structures assumed to present the scalinghore particularly, of relationa () =\ — a/Ing, (2) and(3)
behavior: e{)~r*=. To determine the parametar., the  (with the calculated value o8 (~0.68, we havex~0.065
authors assume the scalimtff)~5E°°/tr, where SE” is a  and —1/In8~2.59. For this, we used the measurements of
kinetic energy and, a characteristic time based on the hy- dimensions=(«) characterizing energy dissipation field, ob-
pothesis that the mixing due to these structures having thitined by Arneodcet al. [15] through a turbulent velocity
characteristic time are homogeneous. It means that the Kobignal obtained at Modane. From these values, we calculated
mogorov description can be applied: It gives-e Y*?3  the A(a) dimensions(only for p=0). Both quantities are
and then\.,=—2/3. A modification of the last calculation represented in Fig. 2. We observe that the functin) is
will allow us to derive the numbeB without this assump- close from a linear variatiofithe linear interpolation gives
tion. We know that the timet, can be estimated by A(a)=~0.02+2.63, in very good agreement with theoretical
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3.5 different from(e,). The first one is an average only over
active parts and the second afehich is classically useds
= F(o) . an average over all the field integrating active and nonactive
37 e A) gur s parts. In the calculation dfeP), there are two contributions:
-~ . eP due to the active part and the intermittent factg(r)
55 | ut . quantifying the space filling properties of the active part. It
s o gives (eP)~&Pf,(r). If we assume the existence of scaling
jl" .° laws (£P)~r", then it leads tor,=(D;—d)p+d—A,.
2 S SinceD;—d=(d—A,)(B—1) andA,=A.+23P, then we
°* obtain 7,=2(8—1)p+2(1-gP) takingd=3 andA,.=1.
s We recover the She-leque expression. Nevertheless, our
1.5 1 / derivation is different from the SL one because it is based
only on geometrical arguments. Moreover, using the relative
P moment &P =(sP*1)/(eP), it can be easily shown that
03 08 o 13 eP* Ve~ (eP/,)P. So, we find a similar relation to the
SL fundamental hypothes{§] where e, should be associ-
FIG. 2. Measurements &(«) from Ref.[15] (for p=0) and its ~ ated withs§°°) . However, the quantity, does not character-

corresponding\(e) dimensions as a function af. ize scaling properties of flaments but mean-field properties
of energy dissipation. For this reason, in our description,
approach which immediately implies relation€2) and (3). intermittency is not due to filaments but to this specific hier-
One can observe thak, being relatively small, relatioi2) ~ &rchy, beginning with{2, (associated witk,) and linking all
can be approximated bi((a;)/A(a,) = a;/as. the fractal skindl, to each other. o
Let us come back to the interpretation &f dimensions. As a conclusion, it has been shown that statistics of fully

So, if fully developed turbulence displays a set of fracta|developed.tL!rbuIen(;e reveals the existence of an in_ternal
structuresQ2, of dimensionA, linked to each other by the SYMMetry in its multifractal spectrum calculated assuming a
recursive relation &, ,—A..)/(A,—A.)=8, it should be Iog—Pmsspn dlstrlb_utlon _through Shexleque_s model[_?].
possible to start from this point of view in order to determine The multifractal dimensions-(«) can *be smeIy written

its scaling properties. Let us calculate the moméafs. For ur:der the form F(a)=1+a*—a*In(a”/2), 1/3WIth

this, we have to introduce some adequate quantities. Th& :(2/3_31_“)””B:213p where 5:.[(1+.3/‘/§) +(1
fractal structures), are characterized by space-filling prop- _3/*\@) i] ~0.68. Introducing the dimensions,=F(«)
erties defined by the volume-fractiofi,(r)=V,(r)/Vy. +a"In(e*/2), this leads to the recursive relatiof
V,(r) is the volume occupied b§), at the scaleg and V¢ =(Ap+17A)/(Ap—A.) with A, =1. The dimensior, is
—13is the total volume of the field, wherg is the integral interpreted as the spatial support of the main contribution to

scale. SinceQ, is fractal, it can be writtenV,(r) the moment(eP) based on energy dissipation. This hierar-
:(rO/r)Aprd and thusfp(r):(r/ro)d—Ap_ To be able to cal- chical structure of fractal skins between all the dimensions

culate (¢P), we need a quantity experimentally accessible Aps directly linked to the multifractal spectrum, reduces

Let P be the rate of energy transferred which, in equilibrium_conSiderab'y the number of parameters needed to character-

conditions of energy injection and energy dissipation, is asiZ€ the statistical geometry of intermittency. We think that
sumed to be constant'P~(prd)(v3)/r where o this result could be very useful to describe some other sys-
L 0 0 0 0

:<5Vr20>1/2 is the typical velocity associated to the integral tems displaying multifractal or intermittency statistics such

X . L as magneto-hydrodynamic turbulen¢&6] or diffusion-
scale andp the fluid density. The rate of energy dissipated . . : R .
per unit mass noted, is calculated througks, = P/m(r), limited aggregatiorj17,18. Of course, this vision requires

i ) . . . _more developments, and we expect to publish our results
wherem(r) is the mass of the fluid contained in the active P P P

part(which is assumed to be fractal of dimensiop) of the very soon.

field at the scale. The quantitym(r) is expressed byn(r) The author expresses all his gratitude to the Professor M.
=pr8(r/ro)d*Df. Then, we obtain the scaling relation G. Rocha for her help and numerous suggestions and F.
~rPr=9 We insist on the fact that the quantigy is really ~ Schmitt for very interesting discussions on this subject.
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